%PDF- %PDF-
Direktori : /usr/src/linux-headers-5.15.0-43/arch/sparc/include/asm/ |
Current File : //usr/src/linux-headers-5.15.0-43/arch/sparc/include/asm/spitfire.h |
/* SPDX-License-Identifier: GPL-2.0 */ /* spitfire.h: SpitFire/BlackBird/Cheetah inline MMU operations. * * Copyright (C) 1996 David S. Miller (davem@davemloft.net) */ #ifndef _SPARC64_SPITFIRE_H #define _SPARC64_SPITFIRE_H #ifdef CONFIG_SPARC64 #include <asm/asi.h> /* The following register addresses are accessible via ASI_DMMU * and ASI_IMMU, that is there is a distinct and unique copy of * each these registers for each TLB. */ #define TSB_TAG_TARGET 0x0000000000000000 /* All chips */ #define TLB_SFSR 0x0000000000000018 /* All chips */ #define TSB_REG 0x0000000000000028 /* All chips */ #define TLB_TAG_ACCESS 0x0000000000000030 /* All chips */ #define VIRT_WATCHPOINT 0x0000000000000038 /* All chips */ #define PHYS_WATCHPOINT 0x0000000000000040 /* All chips */ #define TSB_EXTENSION_P 0x0000000000000048 /* Ultra-III and later */ #define TSB_EXTENSION_S 0x0000000000000050 /* Ultra-III and later, D-TLB only */ #define TSB_EXTENSION_N 0x0000000000000058 /* Ultra-III and later */ #define TLB_TAG_ACCESS_EXT 0x0000000000000060 /* Ultra-III+ and later */ /* These registers only exist as one entity, and are accessed * via ASI_DMMU only. */ #define PRIMARY_CONTEXT 0x0000000000000008 #define SECONDARY_CONTEXT 0x0000000000000010 #define DMMU_SFAR 0x0000000000000020 #define VIRT_WATCHPOINT 0x0000000000000038 #define PHYS_WATCHPOINT 0x0000000000000040 #define SPITFIRE_HIGHEST_LOCKED_TLBENT (64 - 1) #define CHEETAH_HIGHEST_LOCKED_TLBENT (16 - 1) #define L1DCACHE_SIZE 0x4000 #define SUN4V_CHIP_INVALID 0x00 #define SUN4V_CHIP_NIAGARA1 0x01 #define SUN4V_CHIP_NIAGARA2 0x02 #define SUN4V_CHIP_NIAGARA3 0x03 #define SUN4V_CHIP_NIAGARA4 0x04 #define SUN4V_CHIP_NIAGARA5 0x05 #define SUN4V_CHIP_SPARC_M6 0x06 #define SUN4V_CHIP_SPARC_M7 0x07 #define SUN4V_CHIP_SPARC_M8 0x08 #define SUN4V_CHIP_SPARC64X 0x8a #define SUN4V_CHIP_SPARC_SN 0x8b #define SUN4V_CHIP_UNKNOWN 0xff /* * The following CPU_ID_xxx constants are used * to identify the CPU type in the setup phase * (see head_64.S) */ #define CPU_ID_NIAGARA1 ('1') #define CPU_ID_NIAGARA2 ('2') #define CPU_ID_NIAGARA3 ('3') #define CPU_ID_NIAGARA4 ('4') #define CPU_ID_NIAGARA5 ('5') #define CPU_ID_M6 ('6') #define CPU_ID_M7 ('7') #define CPU_ID_M8 ('8') #define CPU_ID_SONOMA1 ('N') #ifndef __ASSEMBLY__ enum ultra_tlb_layout { spitfire = 0, cheetah = 1, cheetah_plus = 2, hypervisor = 3, }; extern enum ultra_tlb_layout tlb_type; extern int sun4v_chip_type; extern int cheetah_pcache_forced_on; void cheetah_enable_pcache(void); #define sparc64_highest_locked_tlbent() \ (tlb_type == spitfire ? \ SPITFIRE_HIGHEST_LOCKED_TLBENT : \ CHEETAH_HIGHEST_LOCKED_TLBENT) extern int num_kernel_image_mappings; /* The data cache is write through, so this just invalidates the * specified line. */ static inline void spitfire_put_dcache_tag(unsigned long addr, unsigned long tag) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* No outputs */ : "r" (tag), "r" (addr), "i" (ASI_DCACHE_TAG)); } /* The instruction cache lines are flushed with this, but note that * this does not flush the pipeline. It is possible for a line to * get flushed but stale instructions to still be in the pipeline, * a flush instruction (to any address) is sufficient to handle * this issue after the line is invalidated. */ static inline void spitfire_put_icache_tag(unsigned long addr, unsigned long tag) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* No outputs */ : "r" (tag), "r" (addr), "i" (ASI_IC_TAG)); } static inline unsigned long spitfire_get_dtlb_data(int entry) { unsigned long data; __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (data) : "r" (entry << 3), "i" (ASI_DTLB_DATA_ACCESS)); /* Clear TTE diag bits. */ data &= ~0x0003fe0000000000UL; return data; } static inline unsigned long spitfire_get_dtlb_tag(int entry) { unsigned long tag; __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (tag) : "r" (entry << 3), "i" (ASI_DTLB_TAG_READ)); return tag; } static inline void spitfire_put_dtlb_data(int entry, unsigned long data) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* No outputs */ : "r" (data), "r" (entry << 3), "i" (ASI_DTLB_DATA_ACCESS)); } static inline unsigned long spitfire_get_itlb_data(int entry) { unsigned long data; __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (data) : "r" (entry << 3), "i" (ASI_ITLB_DATA_ACCESS)); /* Clear TTE diag bits. */ data &= ~0x0003fe0000000000UL; return data; } static inline unsigned long spitfire_get_itlb_tag(int entry) { unsigned long tag; __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (tag) : "r" (entry << 3), "i" (ASI_ITLB_TAG_READ)); return tag; } static inline void spitfire_put_itlb_data(int entry, unsigned long data) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* No outputs */ : "r" (data), "r" (entry << 3), "i" (ASI_ITLB_DATA_ACCESS)); } static inline void spitfire_flush_dtlb_nucleus_page(unsigned long page) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* No outputs */ : "r" (page | 0x20), "i" (ASI_DMMU_DEMAP)); } static inline void spitfire_flush_itlb_nucleus_page(unsigned long page) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* No outputs */ : "r" (page | 0x20), "i" (ASI_IMMU_DEMAP)); } /* Cheetah has "all non-locked" tlb flushes. */ static inline void cheetah_flush_dtlb_all(void) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* No outputs */ : "r" (0x80), "i" (ASI_DMMU_DEMAP)); } static inline void cheetah_flush_itlb_all(void) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* No outputs */ : "r" (0x80), "i" (ASI_IMMU_DEMAP)); } /* Cheetah has a 4-tlb layout so direct access is a bit different. * The first two TLBs are fully assosciative, hold 16 entries, and are * used only for locked and >8K sized translations. One exists for * data accesses and one for instruction accesses. * * The third TLB is for data accesses to 8K non-locked translations, is * 2 way assosciative, and holds 512 entries. The fourth TLB is for * instruction accesses to 8K non-locked translations, is 2 way * assosciative, and holds 128 entries. * * Cheetah has some bug where bogus data can be returned from * ASI_{D,I}TLB_DATA_ACCESS loads, doing the load twice fixes * the problem for me. -DaveM */ static inline unsigned long cheetah_get_ldtlb_data(int entry) { unsigned long data; __asm__ __volatile__("ldxa [%1] %2, %%g0\n\t" "ldxa [%1] %2, %0" : "=r" (data) : "r" ((0 << 16) | (entry << 3)), "i" (ASI_DTLB_DATA_ACCESS)); return data; } static inline unsigned long cheetah_get_litlb_data(int entry) { unsigned long data; __asm__ __volatile__("ldxa [%1] %2, %%g0\n\t" "ldxa [%1] %2, %0" : "=r" (data) : "r" ((0 << 16) | (entry << 3)), "i" (ASI_ITLB_DATA_ACCESS)); return data; } static inline unsigned long cheetah_get_ldtlb_tag(int entry) { unsigned long tag; __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (tag) : "r" ((0 << 16) | (entry << 3)), "i" (ASI_DTLB_TAG_READ)); return tag; } static inline unsigned long cheetah_get_litlb_tag(int entry) { unsigned long tag; __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (tag) : "r" ((0 << 16) | (entry << 3)), "i" (ASI_ITLB_TAG_READ)); return tag; } static inline void cheetah_put_ldtlb_data(int entry, unsigned long data) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* No outputs */ : "r" (data), "r" ((0 << 16) | (entry << 3)), "i" (ASI_DTLB_DATA_ACCESS)); } static inline void cheetah_put_litlb_data(int entry, unsigned long data) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* No outputs */ : "r" (data), "r" ((0 << 16) | (entry << 3)), "i" (ASI_ITLB_DATA_ACCESS)); } static inline unsigned long cheetah_get_dtlb_data(int entry, int tlb) { unsigned long data; __asm__ __volatile__("ldxa [%1] %2, %%g0\n\t" "ldxa [%1] %2, %0" : "=r" (data) : "r" ((tlb << 16) | (entry << 3)), "i" (ASI_DTLB_DATA_ACCESS)); return data; } static inline unsigned long cheetah_get_dtlb_tag(int entry, int tlb) { unsigned long tag; __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (tag) : "r" ((tlb << 16) | (entry << 3)), "i" (ASI_DTLB_TAG_READ)); return tag; } static inline void cheetah_put_dtlb_data(int entry, unsigned long data, int tlb) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* No outputs */ : "r" (data), "r" ((tlb << 16) | (entry << 3)), "i" (ASI_DTLB_DATA_ACCESS)); } static inline unsigned long cheetah_get_itlb_data(int entry) { unsigned long data; __asm__ __volatile__("ldxa [%1] %2, %%g0\n\t" "ldxa [%1] %2, %0" : "=r" (data) : "r" ((2 << 16) | (entry << 3)), "i" (ASI_ITLB_DATA_ACCESS)); return data; } static inline unsigned long cheetah_get_itlb_tag(int entry) { unsigned long tag; __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (tag) : "r" ((2 << 16) | (entry << 3)), "i" (ASI_ITLB_TAG_READ)); return tag; } static inline void cheetah_put_itlb_data(int entry, unsigned long data) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* No outputs */ : "r" (data), "r" ((2 << 16) | (entry << 3)), "i" (ASI_ITLB_DATA_ACCESS)); } #endif /* !(__ASSEMBLY__) */ #endif /* CONFIG_SPARC64 */ #endif /* !(_SPARC64_SPITFIRE_H) */