%PDF- %PDF-
Direktori : /usr/src/linux-headers-5.15.0-125-generic/include/net/ |
Current File : //usr/src/linux-headers-5.15.0-125-generic/include/net/udp.h |
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the UDP module. * * Version: @(#)udp.h 1.0.2 05/07/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * * Fixes: * Alan Cox : Turned on udp checksums. I don't want to * chase 'memory corruption' bugs that aren't! */ #ifndef _UDP_H #define _UDP_H #include <linux/list.h> #include <linux/bug.h> #include <net/inet_sock.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ip.h> #include <linux/ipv6.h> #include <linux/seq_file.h> #include <linux/poll.h> #include <linux/indirect_call_wrapper.h> /** * struct udp_skb_cb - UDP(-Lite) private variables * * @header: private variables used by IPv4/IPv6 * @cscov: checksum coverage length (UDP-Lite only) * @partial_cov: if set indicates partial csum coverage */ struct udp_skb_cb { union { struct inet_skb_parm h4; #if IS_ENABLED(CONFIG_IPV6) struct inet6_skb_parm h6; #endif } header; __u16 cscov; __u8 partial_cov; }; #define UDP_SKB_CB(__skb) ((struct udp_skb_cb *)((__skb)->cb)) /** * struct udp_hslot - UDP hash slot * * @head: head of list of sockets * @count: number of sockets in 'head' list * @lock: spinlock protecting changes to head/count */ struct udp_hslot { struct hlist_head head; int count; spinlock_t lock; } __attribute__((aligned(2 * sizeof(long)))); /** * struct udp_table - UDP table * * @hash: hash table, sockets are hashed on (local port) * @hash2: hash table, sockets are hashed on (local port, local address) * @mask: number of slots in hash tables, minus 1 * @log: log2(number of slots in hash table) */ struct udp_table { struct udp_hslot *hash; struct udp_hslot *hash2; unsigned int mask; unsigned int log; }; extern struct udp_table udp_table; void udp_table_init(struct udp_table *, const char *); static inline struct udp_hslot *udp_hashslot(struct udp_table *table, struct net *net, unsigned int num) { return &table->hash[udp_hashfn(net, num, table->mask)]; } /* * For secondary hash, net_hash_mix() is performed before calling * udp_hashslot2(), this explains difference with udp_hashslot() */ static inline struct udp_hslot *udp_hashslot2(struct udp_table *table, unsigned int hash) { return &table->hash2[hash & table->mask]; } extern struct proto udp_prot; extern atomic_long_t udp_memory_allocated; /* sysctl variables for udp */ extern long sysctl_udp_mem[3]; extern int sysctl_udp_rmem_min; extern int sysctl_udp_wmem_min; struct sk_buff; /* * Generic checksumming routines for UDP(-Lite) v4 and v6 */ static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb) { return (UDP_SKB_CB(skb)->cscov == skb->len ? __skb_checksum_complete(skb) : __skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov)); } static inline int udp_lib_checksum_complete(struct sk_buff *skb) { return !skb_csum_unnecessary(skb) && __udp_lib_checksum_complete(skb); } /** * udp_csum_outgoing - compute UDPv4/v6 checksum over fragments * @sk: socket we are writing to * @skb: sk_buff containing the filled-in UDP header * (checksum field must be zeroed out) */ static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb) { __wsum csum = csum_partial(skb_transport_header(skb), sizeof(struct udphdr), 0); skb_queue_walk(&sk->sk_write_queue, skb) { csum = csum_add(csum, skb->csum); } return csum; } static inline __wsum udp_csum(struct sk_buff *skb) { __wsum csum = csum_partial(skb_transport_header(skb), sizeof(struct udphdr), skb->csum); for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) { csum = csum_add(csum, skb->csum); } return csum; } static inline __sum16 udp_v4_check(int len, __be32 saddr, __be32 daddr, __wsum base) { return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base); } void udp_set_csum(bool nocheck, struct sk_buff *skb, __be32 saddr, __be32 daddr, int len); static inline void udp_csum_pull_header(struct sk_buff *skb) { if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE) skb->csum = csum_partial(skb->data, sizeof(struct udphdr), skb->csum); skb_pull_rcsum(skb, sizeof(struct udphdr)); UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr); } typedef struct sock *(*udp_lookup_t)(const struct sk_buff *skb, __be16 sport, __be16 dport); INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp4_gro_receive(struct list_head *, struct sk_buff *)); INDIRECT_CALLABLE_DECLARE(int udp4_gro_complete(struct sk_buff *, int)); INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp6_gro_receive(struct list_head *, struct sk_buff *)); INDIRECT_CALLABLE_DECLARE(int udp6_gro_complete(struct sk_buff *, int)); void udp_v6_early_demux(struct sk_buff *skb); INDIRECT_CALLABLE_DECLARE(int udpv6_rcv(struct sk_buff *)); struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb, struct udphdr *uh, struct sock *sk); int udp_gro_complete(struct sk_buff *skb, int nhoff, udp_lookup_t lookup); struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb, netdev_features_t features, bool is_ipv6); static inline struct udphdr *udp_gro_udphdr(struct sk_buff *skb) { struct udphdr *uh; unsigned int hlen, off; off = skb_gro_offset(skb); hlen = off + sizeof(*uh); uh = skb_gro_header_fast(skb, off); if (skb_gro_header_hard(skb, hlen)) uh = skb_gro_header_slow(skb, hlen, off); return uh; } /* hash routines shared between UDPv4/6 and UDP-Litev4/6 */ static inline int udp_lib_hash(struct sock *sk) { BUG(); return 0; } void udp_lib_unhash(struct sock *sk); void udp_lib_rehash(struct sock *sk, u16 new_hash); static inline void udp_lib_close(struct sock *sk, long timeout) { sk_common_release(sk); } int udp_lib_get_port(struct sock *sk, unsigned short snum, unsigned int hash2_nulladdr); u32 udp_flow_hashrnd(void); static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb, int min, int max, bool use_eth) { u32 hash; if (min >= max) { /* Use default range */ inet_get_local_port_range(net, &min, &max); } hash = skb_get_hash(skb); if (unlikely(!hash)) { if (use_eth) { /* Can't find a normal hash, caller has indicated an * Ethernet packet so use that to compute a hash. */ hash = jhash(skb->data, 2 * ETH_ALEN, (__force u32) skb->protocol); } else { /* Can't derive any sort of hash for the packet, set * to some consistent random value. */ hash = udp_flow_hashrnd(); } } /* Since this is being sent on the wire obfuscate hash a bit * to minimize possbility that any useful information to an * attacker is leaked. Only upper 16 bits are relevant in the * computation for 16 bit port value. */ hash ^= hash << 16; return htons((((u64) hash * (max - min)) >> 32) + min); } static inline int udp_rqueue_get(struct sock *sk) { return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit); } static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) return inet_bound_dev_eq(!!READ_ONCE(net->ipv4.sysctl_udp_l3mdev_accept), bound_dev_if, dif, sdif); #else return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); #endif } /* net/ipv4/udp.c */ void udp_destruct_common(struct sock *sk); void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len); int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb); void udp_skb_destructor(struct sock *sk, struct sk_buff *skb); struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, int noblock, int *off, int *err); static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags, int noblock, int *err) { int off = 0; return __skb_recv_udp(sk, flags, noblock, &off, err); } int udp_v4_early_demux(struct sk_buff *skb); bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst); int udp_get_port(struct sock *sk, unsigned short snum, int (*saddr_cmp)(const struct sock *, const struct sock *)); int udp_err(struct sk_buff *, u32); int udp_abort(struct sock *sk, int err); int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len); int udp_push_pending_frames(struct sock *sk); void udp_flush_pending_frames(struct sock *sk); int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size); void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst); int udp_rcv(struct sk_buff *skb); int udp_ioctl(struct sock *sk, int cmd, unsigned long arg); int udp_init_sock(struct sock *sk); int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); int __udp_disconnect(struct sock *sk, int flags); int udp_disconnect(struct sock *sk, int flags); __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait); struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb, netdev_features_t features, bool is_ipv6); int udp_lib_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int udp_lib_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen, int (*push_pending_frames)(struct sock *)); struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif); struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif, int sdif, struct udp_table *tbl, struct sk_buff *skb); struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, __be16 sport, __be16 dport); struct sock *udp6_lib_lookup(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, __be16 dport, int dif); struct sock *__udp6_lib_lookup(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, __be16 dport, int dif, int sdif, struct udp_table *tbl, struct sk_buff *skb); struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb, __be16 sport, __be16 dport); int udp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor); /* UDP uses skb->dev_scratch to cache as much information as possible and avoid * possibly multiple cache miss on dequeue() */ struct udp_dev_scratch { /* skb->truesize and the stateless bit are embedded in a single field; * do not use a bitfield since the compiler emits better/smaller code * this way */ u32 _tsize_state; #if BITS_PER_LONG == 64 /* len and the bit needed to compute skb_csum_unnecessary * will be on cold cache lines at recvmsg time. * skb->len can be stored on 16 bits since the udp header has been * already validated and pulled. */ u16 len; bool is_linear; bool csum_unnecessary; #endif }; static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb) { return (struct udp_dev_scratch *)&skb->dev_scratch; } #if BITS_PER_LONG == 64 static inline unsigned int udp_skb_len(struct sk_buff *skb) { return udp_skb_scratch(skb)->len; } static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb) { return udp_skb_scratch(skb)->csum_unnecessary; } static inline bool udp_skb_is_linear(struct sk_buff *skb) { return udp_skb_scratch(skb)->is_linear; } #else static inline unsigned int udp_skb_len(struct sk_buff *skb) { return skb->len; } static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb) { return skb_csum_unnecessary(skb); } static inline bool udp_skb_is_linear(struct sk_buff *skb) { return !skb_is_nonlinear(skb); } #endif static inline int copy_linear_skb(struct sk_buff *skb, int len, int off, struct iov_iter *to) { int n; n = copy_to_iter(skb->data + off, len, to); if (n == len) return 0; iov_iter_revert(to, n); return -EFAULT; } /* * SNMP statistics for UDP and UDP-Lite */ #define UDP_INC_STATS(net, field, is_udplite) do { \ if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field); \ else SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0) #define __UDP_INC_STATS(net, field, is_udplite) do { \ if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field); \ else __SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0) #define __UDP6_INC_STATS(net, field, is_udplite) do { \ if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\ else __SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \ } while(0) #define UDP6_INC_STATS(net, field, __lite) do { \ if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field); \ else SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \ } while(0) #if IS_ENABLED(CONFIG_IPV6) #define __UDPX_MIB(sk, ipv4) \ ({ \ ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \ sock_net(sk)->mib.udp_statistics) : \ (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 : \ sock_net(sk)->mib.udp_stats_in6); \ }) #else #define __UDPX_MIB(sk, ipv4) \ ({ \ IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \ sock_net(sk)->mib.udp_statistics; \ }) #endif #define __UDPX_INC_STATS(sk, field) \ __SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field) #ifdef CONFIG_PROC_FS struct udp_seq_afinfo { sa_family_t family; struct udp_table *udp_table; }; struct udp_iter_state { struct seq_net_private p; int bucket; struct udp_seq_afinfo *bpf_seq_afinfo; }; void *udp_seq_start(struct seq_file *seq, loff_t *pos); void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos); void udp_seq_stop(struct seq_file *seq, void *v); extern const struct seq_operations udp_seq_ops; extern const struct seq_operations udp6_seq_ops; int udp4_proc_init(void); void udp4_proc_exit(void); #endif /* CONFIG_PROC_FS */ int udpv4_offload_init(void); void udp_init(void); DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key); void udp_encap_enable(void); void udp_encap_disable(void); #if IS_ENABLED(CONFIG_IPV6) DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key); void udpv6_encap_enable(void); #endif static inline struct sk_buff *udp_rcv_segment(struct sock *sk, struct sk_buff *skb, bool ipv4) { netdev_features_t features = NETIF_F_SG; struct sk_buff *segs; /* Avoid csum recalculation by skb_segment unless userspace explicitly * asks for the final checksum values */ if (!inet_get_convert_csum(sk)) features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; /* UDP segmentation expects packets of type CHECKSUM_PARTIAL or * CHECKSUM_NONE in __udp_gso_segment. UDP GRO indeed builds partial * packets in udp_gro_complete_segment. As does UDP GSO, verified by * udp_send_skb. But when those packets are looped in dev_loopback_xmit * their ip_summed CHECKSUM_NONE is changed to CHECKSUM_UNNECESSARY. * Reset in this specific case, where PARTIAL is both correct and * required. */ if (skb->pkt_type == PACKET_LOOPBACK) skb->ip_summed = CHECKSUM_PARTIAL; /* the GSO CB lays after the UDP one, no need to save and restore any * CB fragment */ segs = __skb_gso_segment(skb, features, false); if (IS_ERR_OR_NULL(segs)) { int segs_nr = skb_shinfo(skb)->gso_segs; atomic_add(segs_nr, &sk->sk_drops); SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr); kfree_skb(skb); return NULL; } consume_skb(skb); return segs; } static inline void udp_post_segment_fix_csum(struct sk_buff *skb) { /* UDP-lite can't land here - no GRO */ WARN_ON_ONCE(UDP_SKB_CB(skb)->partial_cov); /* UDP packets generated with UDP_SEGMENT and traversing: * * UDP tunnel(xmit) -> veth (segmentation) -> veth (gro) -> UDP tunnel (rx) * * can reach an UDP socket with CHECKSUM_NONE, because * __iptunnel_pull_header() converts CHECKSUM_PARTIAL into NONE. * SKB_GSO_UDP_L4 or SKB_GSO_FRAGLIST packets with no UDP tunnel will * have a valid checksum, as the GRO engine validates the UDP csum * before the aggregation and nobody strips such info in between. * Instead of adding another check in the tunnel fastpath, we can force * a valid csum after the segmentation. * Additionally fixup the UDP CB. */ UDP_SKB_CB(skb)->cscov = skb->len; if (skb->ip_summed == CHECKSUM_NONE && !skb->csum_valid) skb->csum_valid = 1; } #ifdef CONFIG_BPF_SYSCALL struct sk_psock; struct proto *udp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); #endif #endif /* _UDP_H */