%PDF- %PDF-
Direktori : /usr/src/linux-headers-5.15.0-125-generic/include/linux/mtd/ |
Current File : //usr/src/linux-headers-5.15.0-125-generic/include/linux/mtd/mtd.h |
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. */ #ifndef __MTD_MTD_H__ #define __MTD_MTD_H__ #include <linux/types.h> #include <linux/uio.h> #include <linux/list.h> #include <linux/notifier.h> #include <linux/device.h> #include <linux/of.h> #include <linux/nvmem-provider.h> #include <mtd/mtd-abi.h> #include <asm/div64.h> #define MTD_FAIL_ADDR_UNKNOWN -1LL struct mtd_info; /* * If the erase fails, fail_addr might indicate exactly which block failed. If * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level * or was not specific to any particular block. */ struct erase_info { uint64_t addr; uint64_t len; uint64_t fail_addr; }; struct mtd_erase_region_info { uint64_t offset; /* At which this region starts, from the beginning of the MTD */ uint32_t erasesize; /* For this region */ uint32_t numblocks; /* Number of blocks of erasesize in this region */ unsigned long *lockmap; /* If keeping bitmap of locks */ }; /** * struct mtd_oob_ops - oob operation operands * @mode: operation mode * * @len: number of data bytes to write/read * * @retlen: number of data bytes written/read * * @ooblen: number of oob bytes to write/read * @oobretlen: number of oob bytes written/read * @ooboffs: offset of oob data in the oob area (only relevant when * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) * @datbuf: data buffer - if NULL only oob data are read/written * @oobbuf: oob data buffer * * Note, some MTD drivers do not allow you to write more than one OOB area at * one go. If you try to do that on such an MTD device, -EINVAL will be * returned. If you want to make your implementation portable on all kind of MTD * devices you should split the write request into several sub-requests when the * request crosses a page boundary. */ struct mtd_oob_ops { unsigned int mode; size_t len; size_t retlen; size_t ooblen; size_t oobretlen; uint32_t ooboffs; uint8_t *datbuf; uint8_t *oobbuf; }; #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 /** * struct mtd_oob_region - oob region definition * @offset: region offset * @length: region length * * This structure describes a region of the OOB area, and is used * to retrieve ECC or free bytes sections. * Each section is defined by an offset within the OOB area and a * length. */ struct mtd_oob_region { u32 offset; u32 length; }; /* * struct mtd_ooblayout_ops - NAND OOB layout operations * @ecc: function returning an ECC region in the OOB area. * Should return -ERANGE if %section exceeds the total number of * ECC sections. * @free: function returning a free region in the OOB area. * Should return -ERANGE if %section exceeds the total number of * free sections. */ struct mtd_ooblayout_ops { int (*ecc)(struct mtd_info *mtd, int section, struct mtd_oob_region *oobecc); int (*free)(struct mtd_info *mtd, int section, struct mtd_oob_region *oobfree); }; /** * struct mtd_pairing_info - page pairing information * * @pair: pair id * @group: group id * * The term "pair" is used here, even though TLC NANDs might group pages by 3 * (3 bits in a single cell). A pair should regroup all pages that are sharing * the same cell. Pairs are then indexed in ascending order. * * @group is defining the position of a page in a given pair. It can also be * seen as the bit position in the cell: page attached to bit 0 belongs to * group 0, page attached to bit 1 belongs to group 1, etc. * * Example: * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: * * group-0 group-1 * * pair-0 page-0 page-4 * pair-1 page-1 page-5 * pair-2 page-2 page-8 * ... * pair-127 page-251 page-255 * * * Note that the "group" and "pair" terms were extracted from Samsung and * Hynix datasheets, and might be referenced under other names in other * datasheets (Micron is describing this concept as "shared pages"). */ struct mtd_pairing_info { int pair; int group; }; /** * struct mtd_pairing_scheme - page pairing scheme description * * @ngroups: number of groups. Should be related to the number of bits * per cell. * @get_info: converts a write-unit (page number within an erase block) into * mtd_pairing information (pair + group). This function should * fill the info parameter based on the wunit index or return * -EINVAL if the wunit parameter is invalid. * @get_wunit: converts pairing information into a write-unit (page) number. * This function should return the wunit index pointed by the * pairing information described in the info argument. It should * return -EINVAL, if there's no wunit corresponding to the * passed pairing information. * * See mtd_pairing_info documentation for a detailed explanation of the * pair and group concepts. * * The mtd_pairing_scheme structure provides a generic solution to represent * NAND page pairing scheme. Instead of exposing two big tables to do the * write-unit <-> (pair + group) conversions, we ask the MTD drivers to * implement the ->get_info() and ->get_wunit() functions. * * MTD users will then be able to query these information by using the * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. * * @ngroups is here to help MTD users iterating over all the pages in a * given pair. This value can be retrieved by MTD users using the * mtd_pairing_groups() helper. * * Examples are given in the mtd_pairing_info_to_wunit() and * mtd_wunit_to_pairing_info() documentation. */ struct mtd_pairing_scheme { int ngroups; int (*get_info)(struct mtd_info *mtd, int wunit, struct mtd_pairing_info *info); int (*get_wunit)(struct mtd_info *mtd, const struct mtd_pairing_info *info); }; struct module; /* only needed for owner field in mtd_info */ /** * struct mtd_debug_info - debugging information for an MTD device. * * @dfs_dir: direntry object of the MTD device debugfs directory */ struct mtd_debug_info { struct dentry *dfs_dir; const char *partname; const char *partid; }; /** * struct mtd_part - MTD partition specific fields * * @node: list node used to add an MTD partition to the parent partition list * @offset: offset of the partition relatively to the parent offset * @size: partition size. Should be equal to mtd->size unless * MTD_SLC_ON_MLC_EMULATION is set * @flags: original flags (before the mtdpart logic decided to tweak them based * on flash constraints, like eraseblock/pagesize alignment) * * This struct is embedded in mtd_info and contains partition-specific * properties/fields. */ struct mtd_part { struct list_head node; u64 offset; u64 size; u32 flags; }; /** * struct mtd_master - MTD master specific fields * * @partitions_lock: lock protecting accesses to the partition list. Protects * not only the master partition list, but also all * sub-partitions. * @suspended: et to 1 when the device is suspended, 0 otherwise * * This struct is embedded in mtd_info and contains master-specific * properties/fields. The master is the root MTD device from the MTD partition * point of view. */ struct mtd_master { struct mutex partitions_lock; struct mutex chrdev_lock; unsigned int suspended : 1; }; struct mtd_info { u_char type; uint32_t flags; uint64_t size; // Total size of the MTD /* "Major" erase size for the device. Naïve users may take this * to be the only erase size available, or may use the more detailed * information below if they desire */ uint32_t erasesize; /* Minimal writable flash unit size. In case of NOR flash it is 1 (even * though individual bits can be cleared), in case of NAND flash it is * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR * it is of ECC block size, etc. It is illegal to have writesize = 0. * Any driver registering a struct mtd_info must ensure a writesize of * 1 or larger. */ uint32_t writesize; /* * Size of the write buffer used by the MTD. MTD devices having a write * buffer can write multiple writesize chunks at a time. E.g. while * writing 4 * writesize bytes to a device with 2 * writesize bytes * buffer the MTD driver can (but doesn't have to) do 2 writesize * operations, but not 4. Currently, all NANDs have writebufsize * equivalent to writesize (NAND page size). Some NOR flashes do have * writebufsize greater than writesize. */ uint32_t writebufsize; uint32_t oobsize; // Amount of OOB data per block (e.g. 16) uint32_t oobavail; // Available OOB bytes per block /* * If erasesize is a power of 2 then the shift is stored in * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. */ unsigned int erasesize_shift; unsigned int writesize_shift; /* Masks based on erasesize_shift and writesize_shift */ unsigned int erasesize_mask; unsigned int writesize_mask; /* * read ops return -EUCLEAN if max number of bitflips corrected on any * one region comprising an ecc step equals or exceeds this value. * Settable by driver, else defaults to ecc_strength. User can override * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; * see Documentation/ABI/testing/sysfs-class-mtd for more detail. */ unsigned int bitflip_threshold; /* Kernel-only stuff starts here. */ const char *name; int index; /* OOB layout description */ const struct mtd_ooblayout_ops *ooblayout; /* NAND pairing scheme, only provided for MLC/TLC NANDs */ const struct mtd_pairing_scheme *pairing; /* the ecc step size. */ unsigned int ecc_step_size; /* max number of correctible bit errors per ecc step */ unsigned int ecc_strength; /* Data for variable erase regions. If numeraseregions is zero, * it means that the whole device has erasesize as given above. */ int numeraseregions; struct mtd_erase_region_info *eraseregions; /* * Do not call via these pointers, use corresponding mtd_*() * wrappers instead. */ int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys); int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); int (*_read_oob) (struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); int (*_write_oob) (struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf); int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf); int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len); int (*_erase_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len); int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); void (*_sync) (struct mtd_info *mtd); int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); int (*_suspend) (struct mtd_info *mtd); void (*_resume) (struct mtd_info *mtd); void (*_reboot) (struct mtd_info *mtd); /* * If the driver is something smart, like UBI, it may need to maintain * its own reference counting. The below functions are only for driver. */ int (*_get_device) (struct mtd_info *mtd); void (*_put_device) (struct mtd_info *mtd); /* * flag indicates a panic write, low level drivers can take appropriate * action if required to ensure writes go through */ bool oops_panic_write; struct notifier_block reboot_notifier; /* default mode before reboot */ /* ECC status information */ struct mtd_ecc_stats ecc_stats; /* Subpage shift (NAND) */ int subpage_sft; void *priv; struct module *owner; struct device dev; int usecount; struct mtd_debug_info dbg; struct nvmem_device *nvmem; struct nvmem_device *otp_user_nvmem; struct nvmem_device *otp_factory_nvmem; /* * Parent device from the MTD partition point of view. * * MTD masters do not have any parent, MTD partitions do. The parent * MTD device can itself be a partition. */ struct mtd_info *parent; /* List of partitions attached to this MTD device */ struct list_head partitions; struct mtd_part part; struct mtd_master master; }; static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd) { while (mtd->parent) mtd = mtd->parent; return mtd; } static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs) { while (mtd->parent) { ofs += mtd->part.offset; mtd = mtd->parent; } return ofs; } static inline bool mtd_is_partition(const struct mtd_info *mtd) { return mtd->parent; } static inline bool mtd_has_partitions(const struct mtd_info *mtd) { return !list_empty(&mtd->partitions); } int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobecc); int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, int *section, struct mtd_oob_region *oobregion); int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, const u8 *oobbuf, int start, int nbytes); int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, u8 *oobbuf, int start, int nbytes); int mtd_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobfree); int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, const u8 *oobbuf, int start, int nbytes); int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, u8 *oobbuf, int start, int nbytes); int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); static inline void mtd_set_ooblayout(struct mtd_info *mtd, const struct mtd_ooblayout_ops *ooblayout) { mtd->ooblayout = ooblayout; } static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, const struct mtd_pairing_scheme *pairing) { mtd->pairing = pairing; } static inline void mtd_set_of_node(struct mtd_info *mtd, struct device_node *np) { mtd->dev.of_node = np; if (!mtd->name) of_property_read_string(np, "label", &mtd->name); } static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) { return dev_of_node(&mtd->dev); } static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) { return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; } static inline int mtd_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) { struct mtd_info *master = mtd_get_master(mtd); if (!master->_max_bad_blocks) return -ENOTSUPP; if (mtd->size < (len + ofs) || ofs < 0) return -EINVAL; return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs), len); } int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, struct mtd_pairing_info *info); int mtd_pairing_info_to_wunit(struct mtd_info *mtd, const struct mtd_pairing_info *info); int mtd_pairing_groups(struct mtd_info *mtd); int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys); int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, unsigned long offset, unsigned long flags); int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf); int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, struct otp_info *buf); int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); static inline void mtd_sync(struct mtd_info *mtd) { struct mtd_info *master = mtd_get_master(mtd); if (master->_sync) master->_sync(master); } int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); static inline int mtd_suspend(struct mtd_info *mtd) { struct mtd_info *master = mtd_get_master(mtd); int ret; if (master->master.suspended) return 0; ret = master->_suspend ? master->_suspend(master) : 0; if (ret) return ret; master->master.suspended = 1; return 0; } static inline void mtd_resume(struct mtd_info *mtd) { struct mtd_info *master = mtd_get_master(mtd); if (!master->master.suspended) return; if (master->_resume) master->_resume(master); master->master.suspended = 0; } static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) { if (mtd->erasesize_shift) return sz >> mtd->erasesize_shift; do_div(sz, mtd->erasesize); return sz; } static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) { if (mtd->erasesize_shift) return sz & mtd->erasesize_mask; return do_div(sz, mtd->erasesize); } /** * mtd_align_erase_req - Adjust an erase request to align things on eraseblock * boundaries. * @mtd: the MTD device this erase request applies on * @req: the erase request to adjust * * This function will adjust @req->addr and @req->len to align them on * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. */ static inline void mtd_align_erase_req(struct mtd_info *mtd, struct erase_info *req) { u32 mod; if (WARN_ON(!mtd->erasesize)) return; mod = mtd_mod_by_eb(req->addr, mtd); if (mod) { req->addr -= mod; req->len += mod; } mod = mtd_mod_by_eb(req->addr + req->len, mtd); if (mod) req->len += mtd->erasesize - mod; } static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) { if (mtd->writesize_shift) return sz >> mtd->writesize_shift; do_div(sz, mtd->writesize); return sz; } static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) { if (mtd->writesize_shift) return sz & mtd->writesize_mask; return do_div(sz, mtd->writesize); } static inline int mtd_wunit_per_eb(struct mtd_info *mtd) { struct mtd_info *master = mtd_get_master(mtd); return master->erasesize / mtd->writesize; } static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) { return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); } static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, int wunit) { return base + (wunit * mtd->writesize); } static inline int mtd_has_oob(const struct mtd_info *mtd) { struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); return master->_read_oob && master->_write_oob; } static inline int mtd_type_is_nand(const struct mtd_info *mtd) { return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; } static inline int mtd_can_have_bb(const struct mtd_info *mtd) { struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); return !!master->_block_isbad; } /* Kernel-side ioctl definitions */ struct mtd_partition; struct mtd_part_parser_data; extern int mtd_device_parse_register(struct mtd_info *mtd, const char * const *part_probe_types, struct mtd_part_parser_data *parser_data, const struct mtd_partition *defparts, int defnr_parts); #define mtd_device_register(master, parts, nr_parts) \ mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) extern int mtd_device_unregister(struct mtd_info *master); extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); extern int __get_mtd_device(struct mtd_info *mtd); extern void __put_mtd_device(struct mtd_info *mtd); extern struct mtd_info *get_mtd_device_nm(const char *name); extern void put_mtd_device(struct mtd_info *mtd); struct mtd_notifier { void (*add)(struct mtd_info *mtd); void (*remove)(struct mtd_info *mtd); struct list_head list; }; extern void register_mtd_user (struct mtd_notifier *new); extern int unregister_mtd_user (struct mtd_notifier *old); void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); static inline int mtd_is_bitflip(int err) { return err == -EUCLEAN; } static inline int mtd_is_eccerr(int err) { return err == -EBADMSG; } static inline int mtd_is_bitflip_or_eccerr(int err) { return mtd_is_bitflip(err) || mtd_is_eccerr(err); } unsigned mtd_mmap_capabilities(struct mtd_info *mtd); #endif /* __MTD_MTD_H__ */