%PDF- %PDF-
Direktori : /usr/src/linux-headers-5.15.0-125-generic/include/crypto/ |
Current File : //usr/src/linux-headers-5.15.0-125-generic/include/crypto/acompress.h |
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Asynchronous Compression operations * * Copyright (c) 2016, Intel Corporation * Authors: Weigang Li <weigang.li@intel.com> * Giovanni Cabiddu <giovanni.cabiddu@intel.com> */ #ifndef _CRYPTO_ACOMP_H #define _CRYPTO_ACOMP_H #include <linux/crypto.h> #define CRYPTO_ACOMP_ALLOC_OUTPUT 0x00000001 /** * struct acomp_req - asynchronous (de)compression request * * @base: Common attributes for asynchronous crypto requests * @src: Source Data * @dst: Destination data * @slen: Size of the input buffer * @dlen: Size of the output buffer and number of bytes produced * @flags: Internal flags * @__ctx: Start of private context data */ struct acomp_req { struct crypto_async_request base; struct scatterlist *src; struct scatterlist *dst; unsigned int slen; unsigned int dlen; u32 flags; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct crypto_acomp - user-instantiated objects which encapsulate * algorithms and core processing logic * * @compress: Function performs a compress operation * @decompress: Function performs a de-compress operation * @dst_free: Frees destination buffer if allocated inside the * algorithm * @reqsize: Context size for (de)compression requests * @base: Common crypto API algorithm data structure */ struct crypto_acomp { int (*compress)(struct acomp_req *req); int (*decompress)(struct acomp_req *req); void (*dst_free)(struct scatterlist *dst); unsigned int reqsize; struct crypto_tfm base; }; /** * struct acomp_alg - asynchronous compression algorithm * * @compress: Function performs a compress operation * @decompress: Function performs a de-compress operation * @dst_free: Frees destination buffer if allocated inside the algorithm * @init: Initialize the cryptographic transformation object. * This function is used to initialize the cryptographic * transformation object. This function is called only once at * the instantiation time, right after the transformation context * was allocated. In case the cryptographic hardware has some * special requirements which need to be handled by software, this * function shall check for the precise requirement of the * transformation and put any software fallbacks in place. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * * @reqsize: Context size for (de)compression requests * @base: Common crypto API algorithm data structure */ struct acomp_alg { int (*compress)(struct acomp_req *req); int (*decompress)(struct acomp_req *req); void (*dst_free)(struct scatterlist *dst); int (*init)(struct crypto_acomp *tfm); void (*exit)(struct crypto_acomp *tfm); unsigned int reqsize; struct crypto_alg base; }; /** * DOC: Asynchronous Compression API * * The Asynchronous Compression API is used with the algorithms of type * CRYPTO_ALG_TYPE_ACOMPRESS (listed as type "acomp" in /proc/crypto) */ /** * crypto_alloc_acomp() -- allocate ACOMPRESS tfm handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * compression algorithm e.g. "deflate" * @type: specifies the type of the algorithm * @mask: specifies the mask for the algorithm * * Allocate a handle for a compression algorithm. The returned struct * crypto_acomp is the handle that is required for any subsequent * API invocation for the compression operations. * * Return: allocated handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_acomp *crypto_alloc_acomp(const char *alg_name, u32 type, u32 mask); /** * crypto_alloc_acomp_node() -- allocate ACOMPRESS tfm handle with desired NUMA node * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * compression algorithm e.g. "deflate" * @type: specifies the type of the algorithm * @mask: specifies the mask for the algorithm * @node: specifies the NUMA node the ZIP hardware belongs to * * Allocate a handle for a compression algorithm. Drivers should try to use * (de)compressors on the specified NUMA node. * The returned struct crypto_acomp is the handle that is required for any * subsequent API invocation for the compression operations. * * Return: allocated handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_acomp *crypto_alloc_acomp_node(const char *alg_name, u32 type, u32 mask, int node); static inline struct crypto_tfm *crypto_acomp_tfm(struct crypto_acomp *tfm) { return &tfm->base; } static inline struct acomp_alg *__crypto_acomp_alg(struct crypto_alg *alg) { return container_of(alg, struct acomp_alg, base); } static inline struct crypto_acomp *__crypto_acomp_tfm(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_acomp, base); } static inline struct acomp_alg *crypto_acomp_alg(struct crypto_acomp *tfm) { return __crypto_acomp_alg(crypto_acomp_tfm(tfm)->__crt_alg); } static inline unsigned int crypto_acomp_reqsize(struct crypto_acomp *tfm) { return tfm->reqsize; } static inline void acomp_request_set_tfm(struct acomp_req *req, struct crypto_acomp *tfm) { req->base.tfm = crypto_acomp_tfm(tfm); } static inline struct crypto_acomp *crypto_acomp_reqtfm(struct acomp_req *req) { return __crypto_acomp_tfm(req->base.tfm); } /** * crypto_free_acomp() -- free ACOMPRESS tfm handle * * @tfm: ACOMPRESS tfm handle allocated with crypto_alloc_acomp() * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_acomp(struct crypto_acomp *tfm) { crypto_destroy_tfm(tfm, crypto_acomp_tfm(tfm)); } static inline int crypto_has_acomp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_ACOMPRESS; mask |= CRYPTO_ALG_TYPE_ACOMPRESS_MASK; return crypto_has_alg(alg_name, type, mask); } /** * acomp_request_alloc() -- allocates asynchronous (de)compression request * * @tfm: ACOMPRESS tfm handle allocated with crypto_alloc_acomp() * * Return: allocated handle in case of success or NULL in case of an error */ struct acomp_req *acomp_request_alloc(struct crypto_acomp *tfm); /** * acomp_request_free() -- zeroize and free asynchronous (de)compression * request as well as the output buffer if allocated * inside the algorithm * * @req: request to free */ void acomp_request_free(struct acomp_req *req); /** * acomp_request_set_callback() -- Sets an asynchronous callback * * Callback will be called when an asynchronous operation on a given * request is finished. * * @req: request that the callback will be set for * @flgs: specify for instance if the operation may backlog * @cmlp: callback which will be called * @data: private data used by the caller */ static inline void acomp_request_set_callback(struct acomp_req *req, u32 flgs, crypto_completion_t cmpl, void *data) { req->base.complete = cmpl; req->base.data = data; req->base.flags = flgs; } /** * acomp_request_set_params() -- Sets request parameters * * Sets parameters required by an acomp operation * * @req: asynchronous compress request * @src: pointer to input buffer scatterlist * @dst: pointer to output buffer scatterlist. If this is NULL, the * acomp layer will allocate the output memory * @slen: size of the input buffer * @dlen: size of the output buffer. If dst is NULL, this can be used by * the user to specify the maximum amount of memory to allocate */ static inline void acomp_request_set_params(struct acomp_req *req, struct scatterlist *src, struct scatterlist *dst, unsigned int slen, unsigned int dlen) { req->src = src; req->dst = dst; req->slen = slen; req->dlen = dlen; if (!req->dst) req->flags |= CRYPTO_ACOMP_ALLOC_OUTPUT; } /** * crypto_acomp_compress() -- Invoke asynchronous compress operation * * Function invokes the asynchronous compress operation * * @req: asynchronous compress request * * Return: zero on success; error code in case of error */ static inline int crypto_acomp_compress(struct acomp_req *req) { struct crypto_acomp *tfm = crypto_acomp_reqtfm(req); struct crypto_alg *alg = tfm->base.__crt_alg; unsigned int slen = req->slen; int ret; crypto_stats_get(alg); ret = tfm->compress(req); crypto_stats_compress(slen, ret, alg); return ret; } /** * crypto_acomp_decompress() -- Invoke asynchronous decompress operation * * Function invokes the asynchronous decompress operation * * @req: asynchronous compress request * * Return: zero on success; error code in case of error */ static inline int crypto_acomp_decompress(struct acomp_req *req) { struct crypto_acomp *tfm = crypto_acomp_reqtfm(req); struct crypto_alg *alg = tfm->base.__crt_alg; unsigned int slen = req->slen; int ret; crypto_stats_get(alg); ret = tfm->decompress(req); crypto_stats_decompress(slen, ret, alg); return ret; } #endif