%PDF- %PDF-
Direktori : /usr/src/linux-headers-5.15.0-125-generic/arch/powerpc/include/asm/ |
Current File : //usr/src/linux-headers-5.15.0-125-generic/arch/powerpc/include/asm/bitops.h |
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * PowerPC atomic bit operations. * * Merged version by David Gibson <david@gibson.dropbear.id.au>. * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They * originally took it from the ppc32 code. * * Within a word, bits are numbered LSB first. Lot's of places make * this assumption by directly testing bits with (val & (1<<nr)). * This can cause confusion for large (> 1 word) bitmaps on a * big-endian system because, unlike little endian, the number of each * bit depends on the word size. * * The bitop functions are defined to work on unsigned longs, so for a * ppc64 system the bits end up numbered: * |63..............0|127............64|191...........128|255...........192| * and on ppc32: * |31.....0|63....32|95....64|127...96|159..128|191..160|223..192|255..224| * * There are a few little-endian macros used mostly for filesystem * bitmaps, these work on similar bit arrays layouts, but * byte-oriented: * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56| * * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit * number field needs to be reversed compared to the big-endian bit * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b). */ #ifndef _ASM_POWERPC_BITOPS_H #define _ASM_POWERPC_BITOPS_H #ifdef __KERNEL__ #ifndef _LINUX_BITOPS_H #error only <linux/bitops.h> can be included directly #endif #include <linux/compiler.h> #include <asm/asm-compat.h> #include <asm/synch.h> /* PPC bit number conversion */ #define PPC_BITLSHIFT(be) (BITS_PER_LONG - 1 - (be)) #define PPC_BIT(bit) (1UL << PPC_BITLSHIFT(bit)) #define PPC_BITMASK(bs, be) ((PPC_BIT(bs) - PPC_BIT(be)) | PPC_BIT(bs)) /* Put a PPC bit into a "normal" bit position */ #define PPC_BITEXTRACT(bits, ppc_bit, dst_bit) \ ((((bits) >> PPC_BITLSHIFT(ppc_bit)) & 1) << (dst_bit)) #define PPC_BITLSHIFT32(be) (32 - 1 - (be)) #define PPC_BIT32(bit) (1UL << PPC_BITLSHIFT32(bit)) #define PPC_BITMASK32(bs, be) ((PPC_BIT32(bs) - PPC_BIT32(be))|PPC_BIT32(bs)) #define PPC_BITLSHIFT8(be) (8 - 1 - (be)) #define PPC_BIT8(bit) (1UL << PPC_BITLSHIFT8(bit)) #define PPC_BITMASK8(bs, be) ((PPC_BIT8(bs) - PPC_BIT8(be))|PPC_BIT8(bs)) #include <asm/barrier.h> /* Macro for generating the ***_bits() functions */ #define DEFINE_BITOP(fn, op, prefix) \ static inline void fn(unsigned long mask, \ volatile unsigned long *_p) \ { \ unsigned long old; \ unsigned long *p = (unsigned long *)_p; \ __asm__ __volatile__ ( \ prefix \ "1:" PPC_LLARX "%0,0,%3,0\n" \ stringify_in_c(op) "%0,%0,%2\n" \ PPC_STLCX "%0,0,%3\n" \ "bne- 1b\n" \ : "=&r" (old), "+m" (*p) \ : "r" (mask), "r" (p) \ : "cc", "memory"); \ } DEFINE_BITOP(set_bits, or, "") DEFINE_BITOP(clear_bits, andc, "") DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER) DEFINE_BITOP(change_bits, xor, "") static inline void arch_set_bit(int nr, volatile unsigned long *addr) { set_bits(BIT_MASK(nr), addr + BIT_WORD(nr)); } static inline void arch_clear_bit(int nr, volatile unsigned long *addr) { clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr)); } static inline void arch_clear_bit_unlock(int nr, volatile unsigned long *addr) { clear_bits_unlock(BIT_MASK(nr), addr + BIT_WORD(nr)); } static inline void arch_change_bit(int nr, volatile unsigned long *addr) { change_bits(BIT_MASK(nr), addr + BIT_WORD(nr)); } /* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output * operands. */ #define DEFINE_TESTOP(fn, op, prefix, postfix, eh) \ static inline unsigned long fn( \ unsigned long mask, \ volatile unsigned long *_p) \ { \ unsigned long old, t; \ unsigned long *p = (unsigned long *)_p; \ __asm__ __volatile__ ( \ prefix \ "1:" PPC_LLARX "%0,0,%3,%4\n" \ stringify_in_c(op) "%1,%0,%2\n" \ PPC_STLCX "%1,0,%3\n" \ "bne- 1b\n" \ postfix \ : "=&r" (old), "=&r" (t) \ : "r" (mask), "r" (p), "i" (IS_ENABLED(CONFIG_PPC64) ? eh : 0) \ : "cc", "memory"); \ return (old & mask); \ } DEFINE_TESTOP(test_and_set_bits, or, PPC_ATOMIC_ENTRY_BARRIER, PPC_ATOMIC_EXIT_BARRIER, 0) DEFINE_TESTOP(test_and_set_bits_lock, or, "", PPC_ACQUIRE_BARRIER, 1) DEFINE_TESTOP(test_and_clear_bits, andc, PPC_ATOMIC_ENTRY_BARRIER, PPC_ATOMIC_EXIT_BARRIER, 0) DEFINE_TESTOP(test_and_change_bits, xor, PPC_ATOMIC_ENTRY_BARRIER, PPC_ATOMIC_EXIT_BARRIER, 0) static inline int arch_test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { return test_and_set_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0; } static inline int arch_test_and_set_bit_lock(unsigned long nr, volatile unsigned long *addr) { return test_and_set_bits_lock(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0; } static inline int arch_test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { return test_and_clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0; } static inline int arch_test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { return test_and_change_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0; } #ifdef CONFIG_PPC64 static inline unsigned long clear_bit_unlock_return_word(int nr, volatile unsigned long *addr) { unsigned long old, t; unsigned long *p = (unsigned long *)addr + BIT_WORD(nr); unsigned long mask = BIT_MASK(nr); __asm__ __volatile__ ( PPC_RELEASE_BARRIER "1:" PPC_LLARX "%0,0,%3,0\n" "andc %1,%0,%2\n" PPC_STLCX "%1,0,%3\n" "bne- 1b\n" : "=&r" (old), "=&r" (t) : "r" (mask), "r" (p) : "cc", "memory"); return old; } /* * This is a special function for mm/filemap.c * Bit 7 corresponds to PG_waiters. */ #define arch_clear_bit_unlock_is_negative_byte(nr, addr) \ (clear_bit_unlock_return_word(nr, addr) & BIT_MASK(7)) #endif /* CONFIG_PPC64 */ #include <asm-generic/bitops/non-atomic.h> static inline void arch___clear_bit_unlock(int nr, volatile unsigned long *addr) { __asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory"); __clear_bit(nr, addr); } /* * Return the zero-based bit position (LE, not IBM bit numbering) of * the most significant 1-bit in a double word. */ #define __ilog2(x) ilog2(x) #include <asm-generic/bitops/ffz.h> #include <asm-generic/bitops/builtin-__ffs.h> #include <asm-generic/bitops/builtin-ffs.h> /* * fls: find last (most-significant) bit set. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. */ static inline int fls(unsigned int x) { int lz; if (__builtin_constant_p(x)) return x ? 32 - __builtin_clz(x) : 0; asm("cntlzw %0,%1" : "=r" (lz) : "r" (x)); return 32 - lz; } #include <asm-generic/bitops/builtin-__fls.h> /* * 64-bit can do this using one cntlzd (count leading zeroes doubleword) * instruction; for 32-bit we use the generic version, which does two * 32-bit fls calls. */ #ifdef CONFIG_PPC64 static inline int fls64(__u64 x) { int lz; if (__builtin_constant_p(x)) return x ? 64 - __builtin_clzll(x) : 0; asm("cntlzd %0,%1" : "=r" (lz) : "r" (x)); return 64 - lz; } #else #include <asm-generic/bitops/fls64.h> #endif #ifdef CONFIG_PPC64 unsigned int __arch_hweight8(unsigned int w); unsigned int __arch_hweight16(unsigned int w); unsigned int __arch_hweight32(unsigned int w); unsigned long __arch_hweight64(__u64 w); #include <asm-generic/bitops/const_hweight.h> #else #include <asm-generic/bitops/hweight.h> #endif #include <asm-generic/bitops/find.h> /* wrappers that deal with KASAN instrumentation */ #include <asm-generic/bitops/instrumented-atomic.h> #include <asm-generic/bitops/instrumented-lock.h> /* Little-endian versions */ #include <asm-generic/bitops/le.h> /* Bitmap functions for the ext2 filesystem */ #include <asm-generic/bitops/ext2-atomic-setbit.h> #include <asm-generic/bitops/sched.h> #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_BITOPS_H */