%PDF- %PDF-
Direktori : /proc/thread-self/root/usr/src/linux-headers-5.15.0-43/include/linux/ |
Current File : //proc/thread-self/root/usr/src/linux-headers-5.15.0-43/include/linux/wait.h |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_WAIT_H #define _LINUX_WAIT_H /* * Linux wait queue related types and methods */ #include <linux/list.h> #include <linux/stddef.h> #include <linux/spinlock.h> #include <asm/current.h> #include <uapi/linux/wait.h> typedef struct wait_queue_entry wait_queue_entry_t; typedef int (*wait_queue_func_t)(struct wait_queue_entry *wq_entry, unsigned mode, int flags, void *key); int default_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int flags, void *key); /* wait_queue_entry::flags */ #define WQ_FLAG_EXCLUSIVE 0x01 #define WQ_FLAG_WOKEN 0x02 #define WQ_FLAG_BOOKMARK 0x04 #define WQ_FLAG_CUSTOM 0x08 #define WQ_FLAG_DONE 0x10 #define WQ_FLAG_PRIORITY 0x20 /* * A single wait-queue entry structure: */ struct wait_queue_entry { unsigned int flags; void *private; wait_queue_func_t func; struct list_head entry; }; struct wait_queue_head { spinlock_t lock; struct list_head head; }; typedef struct wait_queue_head wait_queue_head_t; struct task_struct; /* * Macros for declaration and initialisaton of the datatypes */ #define __WAITQUEUE_INITIALIZER(name, tsk) { \ .private = tsk, \ .func = default_wake_function, \ .entry = { NULL, NULL } } #define DECLARE_WAITQUEUE(name, tsk) \ struct wait_queue_entry name = __WAITQUEUE_INITIALIZER(name, tsk) #define __WAIT_QUEUE_HEAD_INITIALIZER(name) { \ .lock = __SPIN_LOCK_UNLOCKED(name.lock), \ .head = LIST_HEAD_INIT(name.head) } #define DECLARE_WAIT_QUEUE_HEAD(name) \ struct wait_queue_head name = __WAIT_QUEUE_HEAD_INITIALIZER(name) extern void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *); #define init_waitqueue_head(wq_head) \ do { \ static struct lock_class_key __key; \ \ __init_waitqueue_head((wq_head), #wq_head, &__key); \ } while (0) #ifdef CONFIG_LOCKDEP # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \ ({ init_waitqueue_head(&name); name; }) # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \ struct wait_queue_head name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) #else # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name) #endif static inline void init_waitqueue_entry(struct wait_queue_entry *wq_entry, struct task_struct *p) { wq_entry->flags = 0; wq_entry->private = p; wq_entry->func = default_wake_function; } static inline void init_waitqueue_func_entry(struct wait_queue_entry *wq_entry, wait_queue_func_t func) { wq_entry->flags = 0; wq_entry->private = NULL; wq_entry->func = func; } /** * waitqueue_active -- locklessly test for waiters on the queue * @wq_head: the waitqueue to test for waiters * * returns true if the wait list is not empty * * NOTE: this function is lockless and requires care, incorrect usage _will_ * lead to sporadic and non-obvious failure. * * Use either while holding wait_queue_head::lock or when used for wakeups * with an extra smp_mb() like:: * * CPU0 - waker CPU1 - waiter * * for (;;) { * @cond = true; prepare_to_wait(&wq_head, &wait, state); * smp_mb(); // smp_mb() from set_current_state() * if (waitqueue_active(wq_head)) if (@cond) * wake_up(wq_head); break; * schedule(); * } * finish_wait(&wq_head, &wait); * * Because without the explicit smp_mb() it's possible for the * waitqueue_active() load to get hoisted over the @cond store such that we'll * observe an empty wait list while the waiter might not observe @cond. * * Also note that this 'optimization' trades a spin_lock() for an smp_mb(), * which (when the lock is uncontended) are of roughly equal cost. */ static inline int waitqueue_active(struct wait_queue_head *wq_head) { return !list_empty(&wq_head->head); } /** * wq_has_single_sleeper - check if there is only one sleeper * @wq_head: wait queue head * * Returns true of wq_head has only one sleeper on the list. * * Please refer to the comment for waitqueue_active. */ static inline bool wq_has_single_sleeper(struct wait_queue_head *wq_head) { return list_is_singular(&wq_head->head); } /** * wq_has_sleeper - check if there are any waiting processes * @wq_head: wait queue head * * Returns true if wq_head has waiting processes * * Please refer to the comment for waitqueue_active. */ static inline bool wq_has_sleeper(struct wait_queue_head *wq_head) { /* * We need to be sure we are in sync with the * add_wait_queue modifications to the wait queue. * * This memory barrier should be paired with one on the * waiting side. */ smp_mb(); return waitqueue_active(wq_head); } extern void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); extern void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); extern void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); extern void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); static inline void __add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { struct list_head *head = &wq_head->head; struct wait_queue_entry *wq; list_for_each_entry(wq, &wq_head->head, entry) { if (!(wq->flags & WQ_FLAG_PRIORITY)) break; head = &wq->entry; } list_add(&wq_entry->entry, head); } /* * Used for wake-one threads: */ static inline void __add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { wq_entry->flags |= WQ_FLAG_EXCLUSIVE; __add_wait_queue(wq_head, wq_entry); } static inline void __add_wait_queue_entry_tail(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { list_add_tail(&wq_entry->entry, &wq_head->head); } static inline void __add_wait_queue_entry_tail_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { wq_entry->flags |= WQ_FLAG_EXCLUSIVE; __add_wait_queue_entry_tail(wq_head, wq_entry); } static inline void __remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { list_del(&wq_entry->entry); } void __wake_up(struct wait_queue_head *wq_head, unsigned int mode, int nr, void *key); void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key); void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head, unsigned int mode, void *key, wait_queue_entry_t *bookmark); void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, void *key); void __wake_up_locked_sync_key(struct wait_queue_head *wq_head, unsigned int mode, void *key); void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr); void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode); void __wake_up_pollfree(struct wait_queue_head *wq_head); #define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL) #define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL) #define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL) #define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL, 1) #define wake_up_all_locked(x) __wake_up_locked((x), TASK_NORMAL, 0) #define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL) #define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL) #define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL) #define wake_up_interruptible_sync(x) __wake_up_sync((x), TASK_INTERRUPTIBLE) /* * Wakeup macros to be used to report events to the targets. */ #define poll_to_key(m) ((void *)(__force uintptr_t)(__poll_t)(m)) #define key_to_poll(m) ((__force __poll_t)(uintptr_t)(void *)(m)) #define wake_up_poll(x, m) \ __wake_up(x, TASK_NORMAL, 1, poll_to_key(m)) #define wake_up_locked_poll(x, m) \ __wake_up_locked_key((x), TASK_NORMAL, poll_to_key(m)) #define wake_up_interruptible_poll(x, m) \ __wake_up(x, TASK_INTERRUPTIBLE, 1, poll_to_key(m)) #define wake_up_interruptible_sync_poll(x, m) \ __wake_up_sync_key((x), TASK_INTERRUPTIBLE, poll_to_key(m)) #define wake_up_interruptible_sync_poll_locked(x, m) \ __wake_up_locked_sync_key((x), TASK_INTERRUPTIBLE, poll_to_key(m)) /** * wake_up_pollfree - signal that a polled waitqueue is going away * @wq_head: the wait queue head * * In the very rare cases where a ->poll() implementation uses a waitqueue whose * lifetime is tied to a task rather than to the 'struct file' being polled, * this function must be called before the waitqueue is freed so that * non-blocking polls (e.g. epoll) are notified that the queue is going away. * * The caller must also RCU-delay the freeing of the wait_queue_head, e.g. via * an explicit synchronize_rcu() or call_rcu(), or via SLAB_TYPESAFE_BY_RCU. */ static inline void wake_up_pollfree(struct wait_queue_head *wq_head) { /* * For performance reasons, we don't always take the queue lock here. * Therefore, we might race with someone removing the last entry from * the queue, and proceed while they still hold the queue lock. * However, rcu_read_lock() is required to be held in such cases, so we * can safely proceed with an RCU-delayed free. */ if (waitqueue_active(wq_head)) __wake_up_pollfree(wq_head); } #define ___wait_cond_timeout(condition) \ ({ \ bool __cond = (condition); \ if (__cond && !__ret) \ __ret = 1; \ __cond || !__ret; \ }) #define ___wait_is_interruptible(state) \ (!__builtin_constant_p(state) || \ state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE) \ extern void init_wait_entry(struct wait_queue_entry *wq_entry, int flags); /* * The below macro ___wait_event() has an explicit shadow of the __ret * variable when used from the wait_event_*() macros. * * This is so that both can use the ___wait_cond_timeout() construct * to wrap the condition. * * The type inconsistency of the wait_event_*() __ret variable is also * on purpose; we use long where we can return timeout values and int * otherwise. */ #define ___wait_event(wq_head, condition, state, exclusive, ret, cmd) \ ({ \ __label__ __out; \ struct wait_queue_entry __wq_entry; \ long __ret = ret; /* explicit shadow */ \ \ init_wait_entry(&__wq_entry, exclusive ? WQ_FLAG_EXCLUSIVE : 0); \ for (;;) { \ long __int = prepare_to_wait_event(&wq_head, &__wq_entry, state);\ \ if (condition) \ break; \ \ if (___wait_is_interruptible(state) && __int) { \ __ret = __int; \ goto __out; \ } \ \ cmd; \ } \ finish_wait(&wq_head, &__wq_entry); \ __out: __ret; \ }) #define __wait_event(wq_head, condition) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ schedule()) /** * wait_event - sleep until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. */ #define wait_event(wq_head, condition) \ do { \ might_sleep(); \ if (condition) \ break; \ __wait_event(wq_head, condition); \ } while (0) #define __io_wait_event(wq_head, condition) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ io_schedule()) /* * io_wait_event() -- like wait_event() but with io_schedule() */ #define io_wait_event(wq_head, condition) \ do { \ might_sleep(); \ if (condition) \ break; \ __io_wait_event(wq_head, condition); \ } while (0) #define __wait_event_freezable(wq_head, condition) \ ___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, \ freezable_schedule()) /** * wait_event_freezable - sleep (or freeze) until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute * to system load) until the @condition evaluates to true. The * @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. */ #define wait_event_freezable(wq_head, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_freezable(wq_head, condition); \ __ret; \ }) #define __wait_event_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_UNINTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_timeout - sleep until a condition gets true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * or the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed. */ #define wait_event_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_timeout(wq_head, condition, timeout); \ __ret; \ }) #define __wait_event_freezable_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_INTERRUPTIBLE, 0, timeout, \ __ret = freezable_schedule_timeout(__ret)) /* * like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid * increasing load and is freezable. */ #define wait_event_freezable_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_freezable_timeout(wq_head, condition, timeout); \ __ret; \ }) #define __wait_event_exclusive_cmd(wq_head, condition, cmd1, cmd2) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 1, 0, \ cmd1; schedule(); cmd2) /* * Just like wait_event_cmd(), except it sets exclusive flag */ #define wait_event_exclusive_cmd(wq_head, condition, cmd1, cmd2) \ do { \ if (condition) \ break; \ __wait_event_exclusive_cmd(wq_head, condition, cmd1, cmd2); \ } while (0) #define __wait_event_cmd(wq_head, condition, cmd1, cmd2) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ cmd1; schedule(); cmd2) /** * wait_event_cmd - sleep until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @cmd1: the command will be executed before sleep * @cmd2: the command will be executed after sleep * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. */ #define wait_event_cmd(wq_head, condition, cmd1, cmd2) \ do { \ if (condition) \ break; \ __wait_event_cmd(wq_head, condition, cmd1, cmd2); \ } while (0) #define __wait_event_interruptible(wq_head, condition) \ ___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, \ schedule()) /** * wait_event_interruptible - sleep until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible(wq_head, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_interruptible(wq_head, condition); \ __ret; \ }) #define __wait_event_interruptible_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_INTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was * interrupted by a signal. */ #define wait_event_interruptible_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_interruptible_timeout(wq_head, \ condition, timeout); \ __ret; \ }) #define __wait_event_hrtimeout(wq_head, condition, timeout, state) \ ({ \ int __ret = 0; \ struct hrtimer_sleeper __t; \ \ hrtimer_init_sleeper_on_stack(&__t, CLOCK_MONOTONIC, \ HRTIMER_MODE_REL); \ if ((timeout) != KTIME_MAX) \ hrtimer_start_range_ns(&__t.timer, timeout, \ current->timer_slack_ns, \ HRTIMER_MODE_REL); \ \ __ret = ___wait_event(wq_head, condition, state, 0, 0, \ if (!__t.task) { \ __ret = -ETIME; \ break; \ } \ schedule()); \ \ hrtimer_cancel(&__t.timer); \ destroy_hrtimer_on_stack(&__t.timer); \ __ret; \ }) /** * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, as a ktime_t * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * The function returns 0 if @condition became true, or -ETIME if the timeout * elapsed. */ #define wait_event_hrtimeout(wq_head, condition, timeout) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_hrtimeout(wq_head, condition, timeout, \ TASK_UNINTERRUPTIBLE); \ __ret; \ }) /** * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, as a ktime_t * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * The function returns 0 if @condition became true, -ERESTARTSYS if it was * interrupted by a signal, or -ETIME if the timeout elapsed. */ #define wait_event_interruptible_hrtimeout(wq, condition, timeout) \ ({ \ long __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_hrtimeout(wq, condition, timeout, \ TASK_INTERRUPTIBLE); \ __ret; \ }) #define __wait_event_interruptible_exclusive(wq, condition) \ ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0, \ schedule()) #define wait_event_interruptible_exclusive(wq, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_interruptible_exclusive(wq, condition); \ __ret; \ }) #define __wait_event_killable_exclusive(wq, condition) \ ___wait_event(wq, condition, TASK_KILLABLE, 1, 0, \ schedule()) #define wait_event_killable_exclusive(wq, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_killable_exclusive(wq, condition); \ __ret; \ }) #define __wait_event_freezable_exclusive(wq, condition) \ ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0, \ freezable_schedule()) #define wait_event_freezable_exclusive(wq, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_freezable_exclusive(wq, condition); \ __ret; \ }) /** * wait_event_idle - wait for a condition without contributing to system load * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_IDLE) until the * @condition evaluates to true. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * */ #define wait_event_idle(wq_head, condition) \ do { \ might_sleep(); \ if (!(condition)) \ ___wait_event(wq_head, condition, TASK_IDLE, 0, 0, schedule()); \ } while (0) /** * wait_event_idle_exclusive - wait for a condition with contributing to system load * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_IDLE) until the * @condition evaluates to true. * The @condition is checked each time the waitqueue @wq_head is woken up. * * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag * set thus if other processes wait on the same list, when this * process is woken further processes are not considered. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * */ #define wait_event_idle_exclusive(wq_head, condition) \ do { \ might_sleep(); \ if (!(condition)) \ ___wait_event(wq_head, condition, TASK_IDLE, 1, 0, schedule()); \ } while (0) #define __wait_event_idle_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_IDLE, 0, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_idle_timeout - sleep without load until a condition becomes true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_IDLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * or the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed. */ #define wait_event_idle_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_idle_timeout(wq_head, condition, timeout); \ __ret; \ }) #define __wait_event_idle_exclusive_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_IDLE, 1, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_idle_exclusive_timeout - sleep without load until a condition becomes true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_IDLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag * set thus if other processes wait on the same list, when this * process is woken further processes are not considered. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * or the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed. */ #define wait_event_idle_exclusive_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_idle_exclusive_timeout(wq_head, condition, timeout);\ __ret; \ }) extern int do_wait_intr(wait_queue_head_t *, wait_queue_entry_t *); extern int do_wait_intr_irq(wait_queue_head_t *, wait_queue_entry_t *); #define __wait_event_interruptible_locked(wq, condition, exclusive, fn) \ ({ \ int __ret; \ DEFINE_WAIT(__wait); \ if (exclusive) \ __wait.flags |= WQ_FLAG_EXCLUSIVE; \ do { \ __ret = fn(&(wq), &__wait); \ if (__ret) \ break; \ } while (!(condition)); \ __remove_wait_queue(&(wq), &__wait); \ __set_current_state(TASK_RUNNING); \ __ret; \ }) /** * wait_event_interruptible_locked - sleep until a condition gets true * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * It must be called with wq.lock being held. This spinlock is * unlocked while sleeping but @condition testing is done while lock * is held and when this macro exits the lock is held. * * The lock is locked/unlocked using spin_lock()/spin_unlock() * functions which must match the way they are locked/unlocked outside * of this macro. * * wake_up_locked() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible_locked(wq, condition) \ ((condition) \ ? 0 : __wait_event_interruptible_locked(wq, condition, 0, do_wait_intr)) /** * wait_event_interruptible_locked_irq - sleep until a condition gets true * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * It must be called with wq.lock being held. This spinlock is * unlocked while sleeping but @condition testing is done while lock * is held and when this macro exits the lock is held. * * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() * functions which must match the way they are locked/unlocked outside * of this macro. * * wake_up_locked() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible_locked_irq(wq, condition) \ ((condition) \ ? 0 : __wait_event_interruptible_locked(wq, condition, 0, do_wait_intr_irq)) /** * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * It must be called with wq.lock being held. This spinlock is * unlocked while sleeping but @condition testing is done while lock * is held and when this macro exits the lock is held. * * The lock is locked/unlocked using spin_lock()/spin_unlock() * functions which must match the way they are locked/unlocked outside * of this macro. * * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag * set thus when other process waits process on the list if this * process is awaken further processes are not considered. * * wake_up_locked() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible_exclusive_locked(wq, condition) \ ((condition) \ ? 0 : __wait_event_interruptible_locked(wq, condition, 1, do_wait_intr)) /** * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * It must be called with wq.lock being held. This spinlock is * unlocked while sleeping but @condition testing is done while lock * is held and when this macro exits the lock is held. * * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() * functions which must match the way they are locked/unlocked outside * of this macro. * * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag * set thus when other process waits process on the list if this * process is awaken further processes are not considered. * * wake_up_locked() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible_exclusive_locked_irq(wq, condition) \ ((condition) \ ? 0 : __wait_event_interruptible_locked(wq, condition, 1, do_wait_intr_irq)) #define __wait_event_killable(wq, condition) \ ___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule()) /** * wait_event_killable - sleep until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_KILLABLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_killable(wq_head, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_killable(wq_head, condition); \ __ret; \ }) #define __wait_event_killable_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_KILLABLE, 0, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_killable_timeout - sleep until a condition gets true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_KILLABLE) until the * @condition evaluates to true or a kill signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was * interrupted by a kill signal. * * Only kill signals interrupt this process. */ #define wait_event_killable_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_killable_timeout(wq_head, \ condition, timeout); \ __ret; \ }) #define __wait_event_lock_irq(wq_head, condition, lock, cmd) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ spin_unlock_irq(&lock); \ cmd; \ schedule(); \ spin_lock_irq(&lock)) /** * wait_event_lock_irq_cmd - sleep until a condition gets true. The * condition is checked under the lock. This * is expected to be called with the lock * taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before cmd * and schedule() and reacquired afterwards. * @cmd: a command which is invoked outside the critical section before * sleep * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before invoking the cmd and going to sleep and is reacquired * afterwards. */ #define wait_event_lock_irq_cmd(wq_head, condition, lock, cmd) \ do { \ if (condition) \ break; \ __wait_event_lock_irq(wq_head, condition, lock, cmd); \ } while (0) /** * wait_event_lock_irq - sleep until a condition gets true. The * condition is checked under the lock. This * is expected to be called with the lock * taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before schedule() * and reacquired afterwards. * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before going to sleep and is reacquired afterwards. */ #define wait_event_lock_irq(wq_head, condition, lock) \ do { \ if (condition) \ break; \ __wait_event_lock_irq(wq_head, condition, lock, ); \ } while (0) #define __wait_event_interruptible_lock_irq(wq_head, condition, lock, cmd) \ ___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, \ spin_unlock_irq(&lock); \ cmd; \ schedule(); \ spin_lock_irq(&lock)) /** * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true. * The condition is checked under the lock. This is expected to * be called with the lock taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before cmd and * schedule() and reacquired afterwards. * @cmd: a command which is invoked outside the critical section before * sleep * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. The @condition is * checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before invoking the cmd and going to sleep and is reacquired * afterwards. * * The macro will return -ERESTARTSYS if it was interrupted by a signal * and 0 if @condition evaluated to true. */ #define wait_event_interruptible_lock_irq_cmd(wq_head, condition, lock, cmd) \ ({ \ int __ret = 0; \ if (!(condition)) \ __ret = __wait_event_interruptible_lock_irq(wq_head, \ condition, lock, cmd); \ __ret; \ }) /** * wait_event_interruptible_lock_irq - sleep until a condition gets true. * The condition is checked under the lock. This is expected * to be called with the lock taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before schedule() * and reacquired afterwards. * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or signal is received. The @condition is * checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before going to sleep and is reacquired afterwards. * * The macro will return -ERESTARTSYS if it was interrupted by a signal * and 0 if @condition evaluated to true. */ #define wait_event_interruptible_lock_irq(wq_head, condition, lock) \ ({ \ int __ret = 0; \ if (!(condition)) \ __ret = __wait_event_interruptible_lock_irq(wq_head, \ condition, lock,); \ __ret; \ }) #define __wait_event_lock_irq_timeout(wq_head, condition, lock, timeout, state) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ state, 0, timeout, \ spin_unlock_irq(&lock); \ __ret = schedule_timeout(__ret); \ spin_lock_irq(&lock)); /** * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets * true or a timeout elapses. The condition is checked under * the lock. This is expected to be called with the lock taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before schedule() * and reacquired afterwards. * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or signal is received. The @condition is * checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before going to sleep and is reacquired afterwards. * * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it * was interrupted by a signal, and the remaining jiffies otherwise * if the condition evaluated to true before the timeout elapsed. */ #define wait_event_interruptible_lock_irq_timeout(wq_head, condition, lock, \ timeout) \ ({ \ long __ret = timeout; \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_lock_irq_timeout( \ wq_head, condition, lock, timeout, \ TASK_INTERRUPTIBLE); \ __ret; \ }) #define wait_event_lock_irq_timeout(wq_head, condition, lock, timeout) \ ({ \ long __ret = timeout; \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_lock_irq_timeout( \ wq_head, condition, lock, timeout, \ TASK_UNINTERRUPTIBLE); \ __ret; \ }) /* * Waitqueues which are removed from the waitqueue_head at wakeup time */ void prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state); bool prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state); long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state); void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout); int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); #define DEFINE_WAIT_FUNC(name, function) \ struct wait_queue_entry name = { \ .private = current, \ .func = function, \ .entry = LIST_HEAD_INIT((name).entry), \ } #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function) #define init_wait(wait) \ do { \ (wait)->private = current; \ (wait)->func = autoremove_wake_function; \ INIT_LIST_HEAD(&(wait)->entry); \ (wait)->flags = 0; \ } while (0) bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg); #endif /* _LINUX_WAIT_H */