%PDF- %PDF-
Direktori : /proc/thread-self/root/lib/python3/dist-packages/automat/ |
Current File : //proc/thread-self/root/lib/python3/dist-packages/automat/_methodical.py |
# -*- test-case-name: automat._test.test_methodical -*- import collections from functools import wraps from itertools import count try: # Python 3 from inspect import getfullargspec as getArgsSpec except ImportError: # Python 2 from inspect import getargspec as getArgsSpec import attr import six from ._core import Transitioner, Automaton from ._introspection import preserveName ArgSpec = collections.namedtuple('ArgSpec', ['args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults', 'annotations']) def _getArgSpec(func): """ Normalize inspect.ArgSpec across python versions and convert mutable attributes to immutable types. :param Callable func: A function. :return: The function's ArgSpec. :rtype: ArgSpec """ spec = getArgsSpec(func) return ArgSpec( args=tuple(spec.args), varargs=spec.varargs, varkw=spec.varkw if six.PY3 else spec.keywords, defaults=spec.defaults if spec.defaults else (), kwonlyargs=tuple(spec.kwonlyargs) if six.PY3 else (), kwonlydefaults=( tuple(spec.kwonlydefaults.items()) if spec.kwonlydefaults else () ) if six.PY3 else (), annotations=tuple(spec.annotations.items()) if six.PY3 else (), ) def _getArgNames(spec): """ Get the name of all arguments defined in a function signature. The name of * and ** arguments is normalized to "*args" and "**kwargs". :param ArgSpec spec: A function to interrogate for a signature. :return: The set of all argument names in `func`s signature. :rtype: Set[str] """ return set( spec.args + spec.kwonlyargs + (('*args',) if spec.varargs else ()) + (('**kwargs',) if spec.varkw else ()) + spec.annotations ) def _keywords_only(f): """ Decorate a function so all its arguments must be passed by keyword. A useful utility for decorators that take arguments so that they don't accidentally get passed the thing they're decorating as their first argument. Only works for methods right now. """ @wraps(f) def g(self, **kw): return f(self, **kw) return g @attr.s(frozen=True) class MethodicalState(object): """ A state for a L{MethodicalMachine}. """ machine = attr.ib(repr=False) method = attr.ib() serialized = attr.ib(repr=False) def upon(self, input, enter, outputs, collector=list): """ Declare a state transition within the :class:`automat.MethodicalMachine` associated with this :class:`automat.MethodicalState`: upon the receipt of the `input`, enter the `state`, emitting each output in `outputs`. :param MethodicalInput input: The input triggering a state transition. :param MethodicalState enter: The resulting state. :param Iterable[MethodicalOutput] outputs: The outputs to be triggered as a result of the declared state transition. :param Callable collector: The function to be used when collecting output return values. :raises TypeError: if any of the `outputs` signatures do not match the `inputs` signature. :raises ValueError: if the state transition from `self` via `input` has already been defined. """ inputArgs = _getArgNames(input.argSpec) for output in outputs: outputArgs = _getArgNames(output.argSpec) if not outputArgs.issubset(inputArgs): raise TypeError( "method {input} signature {inputSignature} " "does not match output {output} " "signature {outputSignature}".format( input=input.method.__name__, output=output.method.__name__, inputSignature=getArgsSpec(input.method), outputSignature=getArgsSpec(output.method), )) self.machine._oneTransition(self, input, enter, outputs, collector) def _name(self): return self.method.__name__ def _transitionerFromInstance(oself, symbol, automaton): """ Get a L{Transitioner} """ transitioner = getattr(oself, symbol, None) if transitioner is None: transitioner = Transitioner( automaton, automaton.initialState, ) setattr(oself, symbol, transitioner) return transitioner def _empty(): pass def _docstring(): """docstring""" def assertNoCode(inst, attribute, f): # The function body must be empty, i.e. "pass" or "return None", which # both yield the same bytecode: LOAD_CONST (None), RETURN_VALUE. We also # accept functions with only a docstring, which yields slightly different # bytecode, because the "None" is put in a different constant slot. # Unfortunately, this does not catch function bodies that return a # constant value, e.g. "return 1", because their code is identical to a # "return None". They differ in the contents of their constant table, but # checking that would require us to parse the bytecode, find the index # being returned, then making sure the table has a None at that index. if f.__code__.co_code not in (_empty.__code__.co_code, _docstring.__code__.co_code): raise ValueError("function body must be empty") def _filterArgs(args, kwargs, inputSpec, outputSpec): """ Filter out arguments that were passed to input that output won't accept. :param tuple args: The *args that input received. :param dict kwargs: The **kwargs that input received. :param ArgSpec inputSpec: The input's arg spec. :param ArgSpec outputSpec: The output's arg spec. :return: The args and kwargs that output will accept. :rtype: Tuple[tuple, dict] """ named_args = tuple(zip(inputSpec.args[1:], args)) if outputSpec.varargs: # Only return all args if the output accepts *args. return_args = args else: # Filter out arguments that don't appear # in the output's method signature. return_args = [v for n, v in named_args if n in outputSpec.args] # Get any of input's default arguments that were not passed. passed_arg_names = tuple(kwargs) for name, value in named_args: passed_arg_names += (name, value) defaults = zip(inputSpec.args[::-1], inputSpec.defaults[::-1]) full_kwargs = {n: v for n, v in defaults if n not in passed_arg_names} full_kwargs.update(kwargs) if outputSpec.varkw: # Only pass all kwargs if the output method accepts **kwargs. return_kwargs = full_kwargs else: # Filter out names that the output method does not accept. all_accepted_names = outputSpec.args[1:] + outputSpec.kwonlyargs return_kwargs = {n: v for n, v in full_kwargs.items() if n in all_accepted_names} return return_args, return_kwargs @attr.s(eq=False, hash=False) class MethodicalInput(object): """ An input for a L{MethodicalMachine}. """ automaton = attr.ib(repr=False) method = attr.ib(validator=assertNoCode) symbol = attr.ib(repr=False) collectors = attr.ib(default=attr.Factory(dict), repr=False) argSpec = attr.ib(init=False, repr=False) @argSpec.default def _buildArgSpec(self): return _getArgSpec(self.method) def __get__(self, oself, type=None): """ Return a function that takes no arguments and returns values returned by output functions produced by the given L{MethodicalInput} in C{oself}'s current state. """ transitioner = _transitionerFromInstance(oself, self.symbol, self.automaton) @preserveName(self.method) @wraps(self.method) def doInput(*args, **kwargs): self.method(oself, *args, **kwargs) previousState = transitioner._state (outputs, outTracer) = transitioner.transition(self) collector = self.collectors[previousState] values = [] for output in outputs: if outTracer: outTracer(output._name()) a, k = _filterArgs(args, kwargs, self.argSpec, output.argSpec) value = output(oself, *a, **k) values.append(value) return collector(values) return doInput def _name(self): return self.method.__name__ @attr.s(frozen=True) class MethodicalOutput(object): """ An output for a L{MethodicalMachine}. """ machine = attr.ib(repr=False) method = attr.ib() argSpec = attr.ib(init=False, repr=False) @argSpec.default def _buildArgSpec(self): return _getArgSpec(self.method) def __get__(self, oself, type=None): """ Outputs are private, so raise an exception when we attempt to get one. """ raise AttributeError( "{cls}.{method} is a state-machine output method; " "to produce this output, call an input method instead.".format( cls=type.__name__, method=self.method.__name__ ) ) def __call__(self, oself, *args, **kwargs): """ Call the underlying method. """ return self.method(oself, *args, **kwargs) def _name(self): return self.method.__name__ @attr.s(eq=False, hash=False) class MethodicalTracer(object): automaton = attr.ib(repr=False) symbol = attr.ib(repr=False) def __get__(self, oself, type=None): transitioner = _transitionerFromInstance(oself, self.symbol, self.automaton) def setTrace(tracer): transitioner.setTrace(tracer) return setTrace counter = count() def gensym(): """ Create a unique Python identifier. """ return "_symbol_" + str(next(counter)) class MethodicalMachine(object): """ A :class:`MethodicalMachine` is an interface to an `Automaton` that uses methods on a class. """ def __init__(self): self._automaton = Automaton() self._reducers = {} self._symbol = gensym() def __get__(self, oself, type=None): """ L{MethodicalMachine} is an implementation detail for setting up class-level state; applications should never need to access it on an instance. """ if oself is not None: raise AttributeError( "MethodicalMachine is an implementation detail.") return self @_keywords_only def state(self, initial=False, terminal=False, serialized=None): """ Declare a state, possibly an initial state or a terminal state. This is a decorator for methods, but it will modify the method so as not to be callable any more. :param bool initial: is this state the initial state? Only one state on this :class:`automat.MethodicalMachine` may be an initial state; more than one is an error. :param bool terminal: Is this state a terminal state? i.e. a state that the machine can end up in? (This is purely informational at this point.) :param Hashable serialized: a serializable value to be used to represent this state to external systems. This value should be hashable; :py:func:`unicode` is a good type to use. """ def decorator(stateMethod): state = MethodicalState(machine=self, method=stateMethod, serialized=serialized) if initial: self._automaton.initialState = state return state return decorator @_keywords_only def input(self): """ Declare an input. This is a decorator for methods. """ def decorator(inputMethod): return MethodicalInput(automaton=self._automaton, method=inputMethod, symbol=self._symbol) return decorator @_keywords_only def output(self): """ Declare an output. This is a decorator for methods. This method will be called when the state machine transitions to this state as specified in the decorated `output` method. """ def decorator(outputMethod): return MethodicalOutput(machine=self, method=outputMethod) return decorator def _oneTransition(self, startState, inputToken, endState, outputTokens, collector): """ See L{MethodicalState.upon}. """ # FIXME: tests for all of this (some of it is wrong) # if not isinstance(startState, MethodicalState): # raise NotImplementedError("start state {} isn't a state" # .format(startState)) # if not isinstance(inputToken, MethodicalInput): # raise NotImplementedError("start state {} isn't an input" # .format(inputToken)) # if not isinstance(endState, MethodicalState): # raise NotImplementedError("end state {} isn't a state" # .format(startState)) # for output in outputTokens: # if not isinstance(endState, MethodicalState): # raise NotImplementedError("output state {} isn't a state" # .format(endState)) self._automaton.addTransition(startState, inputToken, endState, tuple(outputTokens)) inputToken.collectors[startState] = collector @_keywords_only def serializer(self): """ """ def decorator(decoratee): @wraps(decoratee) def serialize(oself): transitioner = _transitionerFromInstance(oself, self._symbol, self._automaton) return decoratee(oself, transitioner._state.serialized) return serialize return decorator @_keywords_only def unserializer(self): """ """ def decorator(decoratee): @wraps(decoratee) def unserialize(oself, *args, **kwargs): state = decoratee(oself, *args, **kwargs) mapping = {} for eachState in self._automaton.states(): mapping[eachState.serialized] = eachState transitioner = _transitionerFromInstance( oself, self._symbol, self._automaton) transitioner._state = mapping[state] return None # it's on purpose return unserialize return decorator @property def _setTrace(self): return MethodicalTracer(self._automaton, self._symbol) def asDigraph(self): """ Generate a L{graphviz.Digraph} that represents this machine's states and transitions. @return: L{graphviz.Digraph} object; for more information, please see the documentation for U{graphviz<https://graphviz.readthedocs.io/>} """ from ._visualize import makeDigraph return makeDigraph( self._automaton, stateAsString=lambda state: state.method.__name__, inputAsString=lambda input: input.method.__name__, outputAsString=lambda output: output.method.__name__, )